Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Microbiol Immunol Infect ; 55(3): 445-453, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1370605

ABSTRACT

BACKGROUND: To explore the development of central nervous system (CNS) symptoms and clinical application in predicting the clinical outcomes of SARS-COV-2 patients. METHODS: A retrospective cohort study was performed on the hospitalized patients with SARS-COV-2 recruited from four hospitals in Hubei Province, China from 18 January to 10 March 2020. The patients with CNS symptoms were determined. Data regarding clinical symptoms and laboratory tests were collected from medical records. RESULTS: Of 1268 patients studied, 162 (12.8%) had CNS symptoms, manifested as unconsciousness (71, 5.6%), coma (69, 5.4%), dysphoria (50, 3.9%), somnolence (34, 2.7%) and convulsion (3, 0.2%), which were observed at median of 14 (interquartile range 9-18) days after symptom onset and significantly associated with older age (OR = 5.71, 95% confidence interval [CI] 2.78-11.73), male (OR = 1.73, 95% CI 1.22-2.47) and preexisting hypertension (OR = 1.78, 95% CI 1.23-2.57). The presence of CNS symptoms could be predicted by abnormal laboratory tests across various clinical stages, including by lymphocyte counts of <0.93 × 109/L, LDH≥435 U/L and IL-6≥28.83 pg/L at 0-10 days post disease; by lymphocyte count<0.86 × 109/L, IL-2R ≥ 949 U/L, LDH≥382 U/L and WBC≥8.06 × 109/L at 11-20 days post disease. More patients with CNS symptoms developed fatal outcome compared with patients without CNS symptoms (HR = 33.96, 95% CI 20.87-55.16). CONCLUSION: Neurological symptoms of COVID-19 were related to increased odds of developing poor prognosis and even fatal infection.


Subject(s)
COVID-19 , Hypertension , COVID-19/complications , China/epidemiology , Humans , Lymphocyte Count , Male , Retrospective Studies , SARS-CoV-2
2.
Rev Med Virol ; 31(4): e2195, 2021 07.
Article in English | MEDLINE | ID: covidwho-938541

ABSTRACT

Currently severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission has been on the rise worldwide. Predicting outcome in COVID-19 remains challenging, and the search for more robust predictors continues. We made a systematic meta-analysis on the current literature from 1 January 2020 to 15 August 2020 that independently evaluated 32 circulatory immunological signatures that were compared between patients with different disease severity was made. Their roles as predictors of disease severity were determined as well. A total of 149 distinct studies that evaluated ten cytokines, four antibodies, four T cells, B cells, NK cells, neutrophils, monocytes, eosinophils and basophils were included. Compared with the non-severe patients of COVID-19, serum levels of Interleukins (IL)-2, IL-2R, IL-4, IL-6, IL-8, IL-10 and tumor necrosis factor α were significantly up-regulated in severe patients, with the largest inter-group differences observed for IL-6 and IL-10. In contrast, IL-5, IL-1ß and Interferon (IFN)-γ did not show significant inter-group difference. Four mediators of T cells count, including CD3+ T, CD4+ T, CD8+ T, CD4+ CD25+ CD127- Treg, together with CD19+ B cells count and CD16+ CD56+ NK cells were all consistently and significantly depressed in severe group than in non-severe group. SARS-CoV-2 specific IgA and IgG antibodies were significantly higher in severe group than in non-severe group, while IgM antibody in the severe patients was slightly lower than those in the non-severe patients, and IgE antibody showed no significant inter-group differences. The combination of cytokines, especially IL-6 and IL-10, and T cell related immune signatures can be used as robust biomarkers to predict disease severity following SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/pathology , Cytokines/metabolism , Humans , Killer Cells, Natural/immunology , Leukocytes/immunology , Severity of Illness Index , T-Lymphocytes/immunology
3.
Euro Surveill ; 25(40)2020 10.
Article in English | MEDLINE | ID: covidwho-841040

ABSTRACT

BackgroundThe natural history of disease in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remained obscure during the early pandemic.AimOur objective was to estimate epidemiological parameters of coronavirus disease (COVID-19) and assess the relative infectivity of the incubation period.MethodsWe estimated the distributions of four epidemiological parameters of SARS-CoV-2 transmission using a large database of COVID-19 cases and potential transmission pairs of cases, and assessed their heterogeneity by demographics, epidemic phase and geographical region. We further calculated the time of peak infectivity and quantified the proportion of secondary infections during the incubation period.ResultsThe median incubation period was 7.2 (95% confidence interval (CI): 6.9‒7.5) days. The median serial and generation intervals were similar, 4.7 (95% CI: 4.2‒5.3) and 4.6 (95% CI: 4.2‒5.1) days, respectively. Paediatric cases < 18 years had a longer incubation period than adult age groups (p = 0.007). The median incubation period increased from 4.4 days before 25 January to 11.5 days after 31 January (p < 0.001), whereas the median serial (generation) interval contracted from 5.9 (4.8) days before 25 January to 3.4 (3.7) days after. The median time from symptom onset to discharge was also shortened from 18.3 before 22 January to 14.1 days after. Peak infectivity occurred 1 day before symptom onset on average, and the incubation period accounted for 70% of transmission.ConclusionThe high infectivity during the incubation period led to short generation and serial intervals, necessitating aggressive control measures such as early case finding and quarantine of close contacts.


Subject(s)
Coronavirus Infections/transmission , Coronavirus/pathogenicity , Infectious Disease Incubation Period , Pneumonia, Viral/transmission , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Epidemiologic Studies , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL